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Abstract
The dynamical equation satisfied by the density matrix when a quantum system
is subjected to one or more constraints arising from conserved quantities
is derived. The resulting nonlinear evolution of the density matrix has the
property that it is independent of the specific composition of the pure-state
mixture generating the initial state of the system.

PACS numbers: 03.65.Ca, 02.40.Yy

A nonlinear generalization of quantum mechanics was proposed by Mielnik [1, 2], Kibble
[3] and Weinberg [4] as an alternative to the linear evolution governed by the Schrödinger
equation. The idea of this theory is to replace the linear Hamiltonian operator generating
the dynamics of the state vector with a state-dependent operator in such a way that the norm
of the state vector remains constant. The properties of such ‘nonlinear observables’ were
subsequently studied in detail by Weinberg [5].

Following Weinberg’s analysis, it was argued by Gisin [6, 7] and Polchinski [8] that
the existence of dynamical nonlinearities in quantum mechanics might lead to undesirable
physical features, such as the possibility of superluminal EPR communication. Indeed, it
is often held that the main issue associated with dynamics of the Mielnik–Kibble–Weinberg
(MKW) type is that the evolution of a density matrix depends in general on the specific choice
of pure-state mixture underlying the initial density matrix. Thus, by observing the dynamics
one might be able to infer the particular choice of mixture associated with the initial density
matrix (Haag and Bannier [9], Waniewski [10]), which is contrary to the fundamental notion
that the initial density matrix is a sufficient characterization of the initial state of the system,
and that its composition is irrelevant.

Another potentially problematic aspect of nonlinear quantum mechanics was suggested
by Peres [11], who provided an example where the von Neumann entropy decreases with
time. Tight experimental bounds on the deviation away from the linear evolution law have
been found [12], while criticism of the MKW theory has been strengthened further by Mielnik
[13]. As a consequence of these studies, one might conclude that a consensus has emerged to
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the effect that nonlinear quantum mechanics of the MKW type must be ruled out on physical
grounds.

The purpose of the present communication is to report a generalization of the MKW theory
that circumvents some of these issues. The nonlinear dynamics that we propose emerges from
the consideration of constrained quantum motion. We shall derive the dynamical equation
satisfied by a density matrix when unitarity is compromised by the existence of one or more
constraints. We demonstrate that although the resulting equations of motion are nonlinear, the
associated evolution is autonomous and hence independent of the choice of initial mixture.
We conclude that the nonlinearities arising from the type of constraints considered here can
be regarded as representing a viable step towards an acceptable generalization of the unitary
evolution of quantum mechanics.

Constrained motions appear not infrequently in the general study of dynamical systems
[14]. A systematic investigation of constrained motion in classical mechanics from a
Hamiltonian point of view was carried out by Dirac [15, 16]. In classical mechanics, the
evolution is governed by a symplectic flow on phase space. The idea of Dirac, in essence, is to
find the induced symplectic structure on the constraint surface in phase space, and to use this to
characterize the dynamics. Dirac’s approach has been applied in the quantum context to obtain
the constrained dynamical equations satisfied by pure states [17–19] in various examples. In
this communication we apply similar techniques to derive constrained equations of motion
for mixed states, and to show that in the case of a pure-state density matrix the equations
reduce to the results obtained previously. We consider in particular the special case where
the constraints are given by the conservation of the expectation values of a family of mutually
incompatible observables {�̂k} (k = 1, . . . , N ) satisfying [Ĥ , �̂k] �= 0 for all k, where Ĥ

is the Hamiltonian. Given an initial mixed-state density matrix ρ̂0 there are infinitely many
different mixtures of pure states that give rise to ρ̂0 [20]. In our scheme, nevertheless, the
resulting nonlinear evolution for the density matrix is independent of the specific choice of
mixture. We show additionally that the von Neumann entropy is a constant of the motion for
one version of the dynamics we consider, and hence that the criticism of Peres does not apply
to the constrained dynamics arising in that case.

Let us now present our analysis. As remarked above, the constraints that arise most
naturally in the constrained motions of density matrices involve the conservation in expectation
of a family of observables {�̂k}k=1,...,N so that

tr(ρ̂�̂k) = ck (1)

for all k, where {ck} are constants. For the moment we shall assume that N is even. The
constraints are taken to be nonredundant in the sense that we require [�̂k, �̂l] �= 0 for k �= l

and [Ĥ , �̂k] �= 0 for all k. We shall impose (1) by the use of Lagrange multipliers, and write

dρ̂

dt
= i[ρ̂, Ĥ ] − i

N∑
k=1

λk[ρ̂, �̂k] (2)

for the proposed dynamics of the density matrix. Here {λk}, k = 1, . . . , N , are the Lagrange
multipliers conjugate to the constraints {ck}. In what follows we employ the usual convention
that repeated indices are summed.

The object is to impose the constraints and derive explicit formulae (given by nonlinear
functionals of ρ̂) for the Lagrange multipliers. To derive the {λk} we observe that equation (1)
implies that

tr

(
dρ̂

dt
�̂k

)
= 0. (3)
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Substituting (2) in (3) gives

tr([ρ̂, Ĥ ]�̂k]) − λj tr([ρ̂, �̂j ]�̂k) = 0. (4)

By the cyclic property of the trace operation, equation (4) can be rewritten in the form

tr(ρ̂[Ĥ , �̂k]) − λj tr(ρ̂[�̂j , �̂k]) = 0. (5)

To proceed we define the antisymmetric matrix wjk by setting

wjk = tr(ρ̂[�̂j , �̂k]). (6)

Provided that wjk is nonsingular, which we assume holds at least initially, let us write wij for
its inverse so that wijw

jk = δk
i . Then the equation reads

tr(ρ̂[Ĥ , �̂k]) = λjw
jk (7)

and we can solve (5) for the Lagrange multipliers to obtain

λk = wjk tr(ρ̂[Ĥ , �̂j ]). (8)

Substitution of this expression into (2) gives

dρ̂

dt
= i[ρ̂, Ĥ ] − iwjk tr(ρ̂[Ĥ , �̂j ])[ρ̂, �̂k]. (9)

This is the nonlinear equation of motion satisfied by the density matrix when it is subject to
an even number of constraints of the form (1).

Our objective next is to show that in the case of a pure-state density matrix the evolution
equation (9) reduces in effect to the nonlinear Schrödinger equation obtained in [18]. In
particular, suppose that ρ̂ is a time-dependent pure-state density matrix of the form

ρ̂ = |ψ〉〈ψ |
〈ψ |ψ〉 (10)

for some time-dependent state vector |ψ〉, not necessarily normalized. Then we see that

dρ̂

dt
= |ψ̇〉〈ψ |

〈ψ |ψ〉 +
|ψ〉〈ψ̇ |
〈ψ |ψ〉 − |ψ〉〈ψ |

〈ψ |ψ〉2
(〈ψ̇ |ψ〉 + 〈ψ |ψ̇〉), (11)

and hence that

dρ̂

dt
|ψ〉 = |ψ̇〉 − 〈ψ |ψ̇〉

〈ψ |ψ〉 |ψ〉. (12)

Therefore, for example, if ρ̂ is assumed to satisfy the von Neumann equation

dρ̂

dt
= i[ρ̂, Ĥ ], (13)

we can deduce that |ψ〉 satisfies the so-called projective Schrödinger equation

|ψ̇〉 − 〈ψ |ψ̇〉
〈ψ |ψ〉 |ψ〉 = −i(Ĥ − 〈Ĥ 〉)|ψ〉, (14)

where 〈Ĥ 〉 denotes the expectation of the Hamiltonian:

〈Ĥ 〉 = 〈ψ |Ĥ |ψ〉
〈ψ |ψ〉 . (15)

The projective Schrödinger equation is essentially a slightly ‘weakened’ form of the full
Schrödinger equation

|ψ̇〉 = −iĤ |ψ〉, (16)
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with the ‘unphysical’ component of |ψ̇〉 in the direction of |ψ〉 removed. Clearly (16) implies
(14). It is worth noting, however, that although (16) is linear, the associated projective
equation (14), which embodies the physical content of the Schrödinger equation, is nonlinear.

In the case of a constrained quantum system satisfying (2), essentially the same line of
argument applies, and a short calculation shows that if ρ̂ is a pure-state density matrix then

|ψ̇〉 − 〈ψ |ψ̇〉
〈ψ |ψ〉 |ψ〉 = −i(Ĥ − 〈Ĥ 〉)|ψ〉 + iλk(�̂

k − 〈�̂k〉)|ψ〉, (17)

where

〈�̂k〉 = 〈ψ |�̂k|ψ〉
〈ψ |ψ〉 , (18)

and where by analogy with (6) and (8) we have defined

λk = wjk

〈ψ |[Ĥ , �̂j ]|ψ〉
〈ψ |ψ〉 . (19)

Here wjk is the inverse of the matrix wij defined by

wij = 〈ψ |[�̂i, �̂j ]|ψ〉
〈ψ |ψ〉 . (20)

This result is consistent with the equation derived in [18], and thus we are able to conclude that
the dynamical equation (9) is a natural mixed-state generalization of the constrained equation
of motion for pure states.

We remark, as we discuss in more detail below, that the motion generated by the dynamical
equation (9) depends only on the initial density matrix, and not on the choice of mixture leading
to that matrix. This follows from the fact that the dynamical equation (9) is autonomous in ρ̂.

In addition, we can verify, by use of the cyclic property of the trace operation, that the
von Neumann entropy, defined by

S = −tr(ρ̂ ln ρ̂), (21)

is a constant of motion. The proof is as follows. First we note that if we let pn(t) denote
the components of ρ̂ along the diagonal in a Hilbert space basis with respect to which ρ̂ is
diagonalized, we have

dS

dt
= − d

dt
tr(ρ̂ ln ρ̂)

= − d

dt

∑
n

pn ln pn

= −
∑

n

ṗn ln pn

= − tr

(
dρ̂

dt
ln ρ̂

)
. (22)

Then by use of the dynamical equation (9) for the density matrix we obtain

dS

dt
= −i tr

(
[Ĥ −

∑
k

λk�̂
k, ρ̂] ln ρ̂

)

= −i tr

(
[ln ρ̂, ρ̂]

(
Ĥ −

∑
k

λk�̂
k

))

= 0, (23)
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by virtue of the cyclic property of the trace, and by use of the fact that ρ̂ and ln ρ̂ commute.
We can therefore regard (9) as representing a plausible candidate for an acceptable extension
of the standard unitary dynamics defined by the von Neumann equation.

We observe that the objections originally raised against nonlinear extensions of quantum
mechanics were based implicitly on the essentially mistaken premise that the dynamics of a
general mixed-state density matrix can and must be deduced from the dynamics of pure states.
More precisely, if the initial density matrix ρ̂(0) happens to admit a decomposition of the form

ρ̂(0) =
∑

n

pn�̂n(0), (24)

where {�̂n(0)}n=1,... are normalized projection operators onto a set of pure states
{|ψn〉t=0}n=1,..., then it was assumed that the subsequent dynamics of the density matrix
would have to be of the linear form

ρ̂(t) =
∑

n

pn�̂n(t). (25)

The point is that in his original analysis Gisin [6, 7] apparently had no way to deduce the
dynamics of the density matrix except to regard it as following from the dynamics of pure
states. From a modern perspective, however, we can take essentially the opposite view, and
regard the density matrix as ‘fundamentally’ representing the state of the system, from which
properties of pure states can be deduced as special cases. Hence, in particular, there is no
reason to suppose that the dynamics of ρ̂ can or should be deduced, linearly, from the dynamics
of a set of hypothetical ensemble constituents. An analogous point of view has been advocated
in the work of Czachor [21, 22].

So far we have considered the case for which the number N of conserved observables is
even. If N is odd, then the antisymmetric matrix wjk defined in (6) cannot be inverted. Thus,
to obtain a system of constrained equations of motion that are applicable to the case for which
N is odd we need to modify the foregoing analysis. The idea is to replace the commutator in
(2) by a symmetric product of the form

dρ̂

dt
= i[ρ̂, Ĥ ] − λk({ρ̂, �̂k} − 2 tr(ρ̂�̂k)ρ̂), (26)

where {Â, B̂} = ÂB̂ + B̂Â denotes the anticommutator and where the {λk} comprise a set of
Lagrange multipliers chosen to ensure the constraints (1), where N need not be even. The plan
is to circumvent the problem of the lack of invertibility of wjk arising from the antisymmetric
feature of the commutator by replacing it with a symmetric anticommutator {ρ̂, �̂k}. The
additional trace term on the right-hand side of (26) is to ensure conservation of the total
probability so that

d

dt
trρ̂ = 0, (27)

which follows at once from equation (26).
As before, we determine the Lagrange multipliers by considering the conservation relation

(3). Substituting (26) in (3), and using the cyclic property of the trace, we deduce that

tr(ρ̂[Ĥ , �̂k]) = −iλj (tr(ρ̂{�̂j , �̂k}) − 2 tr(ρ̂�̂j ) tr(ρ̂�̂k)). (28)

To solve (28) for λj we define the symmetric covariance matrix

mjk = tr(ρ̂{�̂j , �̂k}) − 2 tr(ρ̂�̂j ) tr(ρ̂�̂k). (29)

Again, if mjk is nonsingular, we can define its inverse mij which satisfies mijm
jk = δk

i . In this
case, we obtain the following expression for the Lagrange multipliers:

λj = imjk tr(ρ̂[Ĥ , �̂k]). (30)
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Figure 1. Constrained dynamics for mixed states in the case of a spin- 1
2 system: The state space

is a ‘Bloch ball’ B of unit radius; pure states form the boundary (surface) of B and interior points
represent mixed states. The Hamiltonian of the system is given by Ĥ = σ̂z. Hence, under unitarity
motion the evolution generates a rigid rotation of B around the z-axis. We constrain the motion by
fixing the expectation of σ̂x ; the resulting constraint surface is a slice of B perpendicular to the x-
axis, as indicated above. Irrespective of the initial condition, the motion converges asymptotically
to the pure state for which 〈σ̂z〉 = 0. The integral curves associated with the dynamical equation
are shown in the figure.

(This figure is in colour only in the electronic version)

The invertibility of the matrix mjk is ensured by the positive-definiteness of the covariance
matrix, which holds if ρ̂ is itself nonsingular. Therefore, under this assumption the generalized
equation of motion becomes

dρ̂

dt
= i[ρ̂, Ĥ ] − imjk tr(ρ̂[Ĥ , �̂k])({ρ̂, �̂j } − 2 tr(ρ̂�̂j )ρ̂). (31)

We remark, incidentally, that an analogous dynamical equation has been considered in the
context of dissipative quantum dynamics [23].

Example. As an illustration let us consider the case of a spin- 1
2 system for which Ĥ = σ̂z and

the single constraint observable is chosen to be �̂ = σ̂x . The resulting motion for the density
matrix is shown in figure 1. The space of density matrices in this case is a ‘Bloch ball’ B.
The mixed states correspond to the interior points of B and the pure states form the surface of
B. The chosen Hamiltonian would in the unconstrained case generate a rigid rotation around
the z-axis. As we constrain the motion of the system by imposing the condition that the
expectation of σ̂x must be conserved, the resulting constraint surface corresponds to a cross-
section of B at x = x0, where tr(ρ̂σ̂x) = x0. From (31) we deduce the equation of motion for
the system, and find, as is shown in figure 1, that when the initial state is given by a pure-state
density matrix, the state of the system remains pure as it evolves. In this case, the example
reduces to the case considered in [24]. The mixed state evolution trajectories are also shown
for a choice of initial states in the figure. The equator on the surface of B corresponds to a set
of fixed points. Hence, a state that initially lies at the point to the far left of the cross-section
in figure 1 remains fixed, and all other states evolve asymptotically towards the fixed point to
the right in the figure.

Returning now to equation (31), we note that in the special case for which ρ̂ is a pure-state
density matrix of the form (10) we are able to deduce a nonlinear projective Schrödinger
equation satisfied by the state vector |ψ〉 that is applicable to both even and odd number of
conserved observables. This is given by
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|ψ̇〉 − 〈ψ |ψ̇〉
〈ψ |ψ〉 |ψ〉 = −i(Ĥ − 〈Ĥ 〉)|ψ〉 − λk(�̂

k − 〈�̂k〉)|ψ〉, (32)

which is consistent with the result obtained in [24]. Therefore, (31) constitutes a natural
generalization of the result of [24] to the case of general density matrices.

It is interesting to observe that, unlike the motion determined by (9), the motion determined
by (31), which is applicable to any number of constraints, does not necessarily preserve the
von Neumann entropy. In particular, the entropy production is given by

dS

dt
= −2λk cov(�̂k, ln ρ̂), (33)

where cov(X̂, Ŷ ) = tr(ρ̂X̂Ŷ ) − tr(ρ̂X̂) tr(ρ̂Ŷ ). The derivative of the entropy vanishes
identically for pure states, which is why the pure-state limit (32) is well defined. In general,
however, we see that S is not necessarily constant. This is evident in the example shown in
figure 1. On the other hand, just as in equation (9), the evolution equation (31) is autonomous
and independent of the specific composition of the mixture. Whether the fact that the entropy
is variable raises an issue remains an open question.
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